HUC 6 Watershed

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 13,328 5,145.9 18

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potentia	al Change	in Habitat Suitability	Capability	to Cope o	r Persist	Migratio	n Poten	tial
Ash	0				Model			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	1	Abu	ndance		Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	1	Abundant	0	High	6	9	Increase	3	3	Very Good	0	0	Likely	0	0
Oak	3	Common	0	Medium	10	20	No Change	6	6	Good	2	2	Infill	5	5
Pine	0	Rare	22	Low	14	3	Decrease	10	10	Fair	3	3	Migrate	4	5
Other	17	Absent	9	FIA	3		New	7	7	Poor	7	7	·	9	10
•	22	_	31		33	32	Unknown	7	7	Very Poor	6	6			
							-	33	33	FIA Only	2	2			
										Unknown	4	4			
Potentia	ıl Chang	as in Climata Var	•	24	24										

Potential Changes in Climate Variables

Temperatu	ıre (°F)					Precipitat	ion (in)					
	Scenario	2009	2039	2069	2099		Scenario	2009	2039	2069	2099	
Annual	CCSM45	47.8	48.7	49.6	50.0	Annual	CCSM45	15.5	15.9	15.8	15.2	+
Average	CCSM85	47.8	49.1	50.1	51.7	Total	CCSM85	15.5	15.3	16.4	15.7	-
	GFDL45	47.8	51.3	50.4	51.3		GFDL45	15.5	15.8	18.1	15.8	
	GFDL85	47.8	49.5	51.2	53.5		GFDL85	15.5	15.9	17.0	16.0	—
	HAD45	47.8	49.0	50.5	51.1		HAD45	15.5	17.0	16.0	16.5	-
	HAD85	47.8	49.2	51.7	53.3		HAD85	15.5	15.9	14.0	16.4	\
Growing	CCSM45	56.8	57.8	58.8	59.2	Growing	CCSM45	8.8	8.5	8.4	8.2	
Season	CCSM85	56.8	58.2	59.2	61.2	Season	CCSM85	8.8	8.6	8.8	8.3	
May—Sep	GFDL45	56.8	61.5	60.1	61.5	May—Sep	GFDL45	8.8	8.9	10.4	9.0	
	GFDL85	56.8	59.1	61.2	64.1		GFDL85	8.8	9.5	10.0	9.1	+
	HAD45	56.8	57.8	59.1	59.5 ◆◆◆		HAD45	8.8	9.7	9.3	9.4	+
	HAD85	56.8	58.2	60.8	62.1		HAD85	8.8	8.4	7.3	8.8	•
Coldest	CCSM45	34.7	35.9	36.3	36.8							
Month	CCSM85	34.7	36.1	36.3	37.3	NOTE: For	the six clim	nate varial	oles, four 3	0-year pe	riods are us	sed to i
Average	GFDL45	34.7	36.6	36.6	36.7	ending in 1	2009 is base	ed on mod	leled obser	vations f	om the PRI	ISM Clir
	GFDL85	34.7	35.3	36.0	36.4 ◆◆◆◆	obtained f	from the NA	SA NEX-D	CP30 datas	et. Futur	e climate pi	rojectio
	HAD45	34.7	35.2	36.5	36.5	show estir	mates of ea	ch climate	variable w	ithin the	region. The	three
	HAD85	34.7	36.5	37.6	38.5		mission scei				•	_
Warmest	CCSM45	60.3	61.4	62.2	62.4	within the	region may	vary subs	stantially b	ased on la	ititude, ele	vation,
Month	CCSM85	60.3	61.9	62.3	63.5	Cite as: Ive	erson, L.R.;	Prasad. A.	M.: Peters	M.P.: Ma	atthews. S.N	N. 2019
Average	GFDL45	60.3	63.2	63.6	64.8		nange: A Sp	,		•	,	
	GFDL85	60.3	63.3	64.4	67.0		ites. Forests	, ,	,		•	

63.8

periods are used to indicate six potential future trajectories. The period is from the PRISM Climate Group and the three future periods were ture climate projections from three models under two emission scenarios he region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES CP. The average value for the region is reported, even though locations n latitude, elevation, land-use, or other factors.

Matthews, S.N. 2019. Facilitating Adaptive Forest Management under 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

HAD45

HAD85

60.3

60.3

61.3

62.0

62.1

63.1

HUC 111203 North Fork Red

HUC 6 Watershed

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
black willow	Salix nigra	NSH	Low	23.5	42.3	26.2	Lg. dec.	Lg. dec.	Low	Rare	Very Poor	Very Poor			0 1
black locust	Robinia pseudoacacia	NDH	Low	26.2	30.1	24.8	Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 2
American elm	Ulmus americana	WDH	Medium	24.8	23.8	25.0	No change	No change	Medium	Rare	Poor	Poor			1 3
Siberian elm	Ulmus pumila	NDH	FIA	24.7	18.7	18.3	Unknown	Unknown	NA	Rare	NNIS	NNIS			0 4
eastern redcedar	Juniperus virginiana	WDH	Medium	11.6	17.9	11.0	Sm. inc.	Sm. inc.	Medium	Rare	Fair	Fair			1 5
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp	. NSL	Low	10.5	17.7	7.7	Sm. inc.	Sm. inc.	High	Rare	Good	Good			1 6
black walnut	Juglans nigra	WDH	Low	3.7	15.4	18.3	Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 7
eastern cottonwood	Populus deltoides	NSH	Low	14.6	11.8	18.5	No change	No change	Medium	Rare	Poor	Poor			1 8
post oak	Quercus stellata	WDH	High	0.1	11.2	1.2	No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 9
Osage-orange	Maclura pomifera	NDH	Medium	13.7	11.1	17.0	Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			1 10
hackberry	Celtis occidentalis	WDH	Medium	6.3	8.3	12.8	Sm. dec.	Sm. dec.	High	Rare	Poor	Poor	Infill +	Infill +	1 11
honeylocust	Gleditsia triacanthos	NSH	Low	10.1	6.0	14.3	Lg. dec.	Lg. dec.	High	Rare	Poor	Poor	Infill +	Infill +	1 12
red mulberry	Morus rubra	NSL	Low	15.6	6.0	9.7	Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 13
sugarberry	Celtis laevigata	NDH	Medium	5.5	5.1	27.2	No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	1 14
common persimmon	Diospyros virginiana	NSL	Low	3.1	4.4	13.1	Very Lg. dec.	Very Lg. dec.	High	Rare	Lost	Lost			0 15
blackjack oak	Quercus marilandica	NSL	Medium	0.1	2.9	0.3	No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 16
slippery elm	Ulmus rubra	WSL	Low	0.8	2.1	0.6	Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 17
sugar maple	Acer saccharum	WDH	High	0.1	1.5	0.2	Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 18
Kentucky coffeetree	Gymnocladus dioicus	NSLX	FIA	0.7	0.9	0.6	Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0 19
pecan	Carya illinoinensis	NSH	Low	5.5	0.9	4.5	No change	No change	Low	Rare	Very Poor	Very Poor			2 20
wild plum	Prunus americana	NSLX	FIA	0.1	0.7	0.1	Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0 21
northern red oak	Quercus rubra	WDH	Medium	0.1	0.1	0.0	Sm. inc.	Sm. inc.	High	Rare	Good	Good			0 22
ashe juniper	Juniperus ashei	NDH	High	0	0	0	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			0 23
striped maple	Acer pensylvanicum	NSL	Medium	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 24
serviceberry	Amelanchier spp.	NSL	Low	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 25
shellbark hickory	Carya laciniosa	NSL	Low	0	0	0	Unknown	Unknown	Medium	Modeled	Unknown	Unknown			0 26
black hickory	Carya texana	NDL	High	0	0	0	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 27
green ash	Fraxinus pennsylvanica	WSH	Low	0	0	0	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat		Migrate +	3 28
bigleaf magnolia	Magnolia macrophylla	NSL	Low	0	0	0	Unknown	Unknown	Medium	Modeled	Unknown	Unknown			0 29
chinkapin oak	Quercus muehlenbergii	NSL	Medium	0	0	0	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 30
black oak	Quercus velutina	WDH	High	0	0	0	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 31
live oak	Quercus virginiana	NDH	High	0	0	0	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate ++	Migrate +	3 32
cedar elm	Ulmus crassifolia	NDH	Medium	0	0	0	New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat	Migrate ++	Migrate +	+ 3 33

